1879=16t^2

Simple and best practice solution for 1879=16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1879=16t^2 equation:



1879=16t^2
We move all terms to the left:
1879-(16t^2)=0
a = -16; b = 0; c = +1879;
Δ = b2-4ac
Δ = 02-4·(-16)·1879
Δ = 120256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120256}=\sqrt{64*1879}=\sqrt{64}*\sqrt{1879}=8\sqrt{1879}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1879}}{2*-16}=\frac{0-8\sqrt{1879}}{-32} =-\frac{8\sqrt{1879}}{-32} =-\frac{\sqrt{1879}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1879}}{2*-16}=\frac{0+8\sqrt{1879}}{-32} =\frac{8\sqrt{1879}}{-32} =\frac{\sqrt{1879}}{-4} $

See similar equations:

| 3(g+3)-1=17 | | 5-(8x-5)=6-2(4x-5) | | -5-n=-6 | | c+72=92c= | | 1/f=1/116.2+1/80.7 | | 7x+9=7x+2 | | 20/x+2=5/7 | | 70(2)x=50(3)x | | 125÷13x=21x-75 | | –14+7m=7 | | (7x+2)=(8x-6) | | -5a-4=41 | | 2(p+2)+7=-3 | | 8+3/5x=29 | | 5-(8x-5)=6-2(4x-5 | | -3h+42=81-23 | | 3(3x-4)=-15 | | -9k=-81 | | -7v=-3-6v-4 | | (X+2)^2+(y+3)^2=49 | | (y+7)=5 | | -10+2=-7x-8-1x | | 2(3x+4)-3=-19 | | 3x−15=3x− | | F(x)=-9x2-3 | | 4+k/2=-1 | | (8x-2)+(11x+11)=180 | | 3x+2×=600 | | 3x+10=5x-8- | | 15-1x=10-1.50x | | 5(n+3)=-55-6(n | | -2(t+5)=16 |

Equations solver categories